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Abstract

The creep of paper is accelerated by moisture cycling. This effect is known as mechano-sorptive creep. It is assumed
that this is an effect of transient stresses produced during moisture content changes in combination with non-linear
creep behaviour of the fibres. The stresses produced by the moisture content changes are often much larger than the
applied mechanical loads. If this is the case, the mechanical loads are only a perturbation to the internal stress state,
and it will appear as if the mechano-sorptive creep is linear in stress. It is possible to take advantage of this feature.
In the present report the pure moisture problem is first solved. The mechanical load is then treated as a perturbation
of the solution to the moisture problem. Using this strategy, it is possible to linearize a non-linear network model for
mechano-sorptive creep and to formulate a continuum model. As a result, the number of variables in the model is
reduced. This is a significant improvement as it will be possible to use the linearized model to describe the material
in a finite element program and solve problems with complicated geometries.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Modeling; Mechano-sorptive creep; Moisture accelerated creep; Paper; Perturbation method

1. Introduction

Paper and board packages are often loaded for times long enough for creep to be important, and this
must be considered in design. Paper is sensitive to moisture and the creep compliance increases with mois-
ture content. High humidity climate is however not the worst possible environment as creep is also accel-
erated by varying humidity (Byrd, 1972a,b). The accelerated creep is known as mechano-sorptive creep, and
is also found in wood (Armstrong and Kingston, 1960; Armstrong and Christensen, 1961), concrete
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(Pickett, 1942) and some synthetic fibres (Wang et al., 1990, 1991, 1992, 1993; Habeger and Coffin, 2000;
Habeger et al., 2001).

There is still no generally accepted explanation for mechano-sorptive creep, but there are several hypoth-
eses and models. One possible explanation is that large local stresses are produced when the moisture con-
tent changes due to inhomogeneous hygroexpansion, which in turn will accelerate the creep if the creep rate
depends non-linearly on stresses. Models have demonstrated that this mechanism will produce accelerated
creep resembling the creep behaviour found in experiments (Pickett, 1942; Habeger and Coffin, 2000;
Alfthan et al., 2002; Alfthan, 2003). The advantage over several other models is that no special mechanism
is introduced to explain mechano-sorptive creep—it is known that the creep of fibres and paper is non-linear
and inhomogeneous hygroexpansion can be the result of material inhomogeneities, moisture gradients or
both. However, the non-linearity necessary for the mechanism makes the models complicated, and numer-
ical methods are necessary even for simple problems. The network models (Alfthan et al., 2002; Alfthan,
2003) include many variables and equations to solve, and numerical simulations are therefore very slow.

In Alfthan (2003) it was found that the network model, albeit based on a non-linear mechanism, exhib-
ited an almost linear behaviour between stresses and strains for mechanical loads that are encountered in
applications. In the present paper, this feature is exploited to linearize the model, and a continuum model
for mechano-sorptive creep of paper with a reduced number of variables is obtained. This linearized model
can for example be implemented as a material model in a finite element program and it can be used to solve
problems with more complicated geometries, for example a corrugated board container.

2. Linearization of the network model

It is assumed that the internal stresses produced by inhomogeneous hygroexpansion are much larger
than the stresses produced by externally applied mechanical loads, and that the latter can be treated as a
small perturbation of the former stress state. An approximate solution to a problem with moisture varia-
tions and external loads is then obtained by first solving a non-linear problem with moisture variations but
no external loads, and then solve a linearized problem to get the perturbation caused by the external loads.
A related analysis of moisture induced transients in DMA response of a simple one dimensional model is
found in Coffin and Habeger (2001).

Fig. 1 shows the geometry of a fibre. In the following, index A is used for variables and constants for the
free segments, index B is used for the bonded segments and index C is used for the bonded crossing fibres.
Properties with index A or B reflect the longitudinal behaviour of fibres, while properties with index C
reflect the transverse behaviour.

2.1. Analysis of the pure moisture problem

First the pure moisture problem is considered. It is assumed that the moisture content m is known as a
function of time ¢, m = m(t). It is also assumed that the free segments of the fibres can expand freely so that
no stresses are created, i.e.,

éa = ﬁAma (1)

OA — 0. (2)
For the bonded segments, see Fig. 1, strains and stresses are related by

&g = &c, (3)

og + oc = 0. 4)
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Fig. 1. Geometry of the fibre segments. The ratio A is defined as the length of the free segments, Ly, divided by the total length, Lo,
and the direction of the fibre is defined by the angle ¢ measured from the x-axis of the coordinate system.

where it has been assumed that fibres cross at right angles. The stresses o and oc relax as the material
creeps and will eventually vanish. The constitutive laws for the bonded fibre segments read

a
ey = — + &5 + Ppm, (5)
Ep
o
ec=—+ &+ Pem, (6)
Ec
where the creep strains &f and e, are given by the creep laws
&y = fo(0B, £p), (7)
éc = Jfe(oc, &) (8)

For a given moisture content history, Egs. (1)—(8) constitute a non-linear system of equations for the stres-
ses and strains of the pure moisture problem.
The average strain of a fibre will be

e=Jea+ (1 — A)es, )

where / is the ratio between free fibre length and total fibre length, see Fig. 1. For an anisotropic fibre ori-
entation, the ratio 4 generally vary with orientation.

The average strain is also related to the macroscopic strains of the sheet. In accordance with Alfthan
(2003), it is assumed that the strain of a fibre is equal to the macroscopic strain in the fibre direction, i.e.,

& = &,cos’g + &,sin’p + 7,, sin @ cos ¢, (10)

where ¢ is the angle of the fibre measured from the x-axis.

If the fibre distribution is given, it is possible to calculate the number of fibre crossings (Komori and
Makishima, 1977), and from that the ratio 4 can be calculated. For a plane fibre network, with rectangular
cross sections of the fibres, the ratio 4 is given by

/2
j=1 —2p[ SWlsin(o —p)lay (11)
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where f'is the frequency function of the fibre distribution. If the frequency function is

.f:l(l—l—occosZgo), (12)
T
then A will be given by
) = Jycos’p + A,sin’g, (13)
with
4,0 4po<
=1-—4+—-— 14
3. (14)
, 4p 4po
Ay =1 e (15)

where p is the volume fraction of fibres in the network.
In this case the initial assumptions Egs. (1) and (2) will be fulfilled, and Egs. (9) and (10) will be reduced
to

& = xéa + (1 — A )es, (16)
&y = Ayea + (1 — A,)en, (17)
Py = 0. (18)

For general fibre distributions, Eqgs. (1) and (2) will not be exactly satisfied, but the error is quite small.
2.2. Linearized analysis of the mechanical problem

In the following analysis, it is assumed that the mechanical load can be treated as a small perturbation to
the moisture problem. The perturbation strains dga, dég and dec in a fibre are then given by

5
Sea :Ei:Jrag;, (19)
Sep = ‘;L; + O, (20)
Sec :%%583, (21)

where dg 4, 60p and doc are the perturbations in stress and de%, de; and de. are the creep strains caused by
the perturbation.
The creep strains will be given by Egs. (7) and (8) and the corresponding creep law for the free segments

& = faloa, &) (22)

The functions f and fp are equal as both are used to describe the longitudinal behaviour of the fibres.
The mechanical stresses are only a perturbation to the stress state of the pure moisture problem, so it is
viable to approximate the creep laws by Taylor expansions

% S7(0.0) + 52 (0.0)d0n + 22 0.0)55, (23)
0

8%%f3(6%7g%0)+£( oy, &5 )0 B+af§ (0%, &) 5¢s,, (24)
Ofc Ofc

{;CC %fC(O'(():,SEO) +E( C78C )5 oc + e CC (O’C, 0)58‘67 (25)
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where a3, &, 0% and &2 are the time dependent stresses and strains that result from the pure moisture prob-
lem. Identification of the perturbations to the creep strain rates, d¢;, dé; and dé¢, leads to the linearized
creep laws

08, = SfA (0,0)004 + ng (0,0)565,, (26)
O, = afB( &)dop + e (0%, )0e8, (27)
Jop Os§;
5C afc c f c
dég. = a(ag, &)dac + 6 : (02, &2) 8¢ (28)
The perturbation strains and stresses in the fibre are related by
deg = Oéc, (29)
0op + doc = dop = 00, (30)
0e = Adep + (1 — 2)0ep, (31)

where dg has been introduced as a shorthand for the stress in the free segments.
Egs. (19)—(31) can be interpreted as a linear rheological model, see Fig. 2. The parameters of the rheo-
logical model are identified from Eqgs. (26)—(28)

1 afA
1 2
L% 0,0, (32)
1 Ofa Ofa
—=—=(0,0 0,0 33
2~ 20, " )/ 5 0.0, )
1 _ afB 0 0
L)} " dop (0, €5 ) (4
1 ofs w0y / Of o
E=—£(6%7330) é(dg,sﬁ)), (35)
B
1 7afC 0 .c0
%—E(UCaSC)v (36)
Es
Eg
E? g
56 E, 8o, e
-4— o
Ny EZ
Ec
Ne

Fig. 2. A rheological model representing Eqs. (19)—(28). The parameters of the rheological model are given by Egs. (32)—(37).
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L = __@fc (a2, Q) %(00 ) (37)
EL " ac \T0%) [ e (00 tc)

The parameters depend on the solution from the pure moisture problem, hence they will be time depen-
dent. Using the parameters of the rheological model, Eqgs. (26)—(28) can be rewritten as

dop — EZ 06

08, = 38

< ” (38)
— E%5¢
SE, = M, (39)
B
_ F2 §5¢C
5i. = oac EC&C. (40)
fic
If it is assumed that the creep can be described by the non-linear creep laws

fA = daa Sil’lh(bA(JA —EZFZ)), (41)

fi = ag sinh(bg (o5 — ES&S,)), (42)

fe = acsinh(be(oc — ESEL)), (43)

then

1

—_ = aAbA7 (44)

Na

EX = E5, (45)
1

= agbg cosh(by(a% — ESEL)), (46)
B

EX = ES, (47)
1

v achc cosh(be(al — ESed)), (48)
C

EL =E¢, (49)

where it has been utilized that stresses in the free segments vanish for the moisture problem.
2.3. Continuum model

In this subsection indices i, j, kK and / denoted coordinate directions, and they take values 1 and 2 cor-
responding to x and y respectively, see Fig. 1. A repeated index letter in an expression indicates a sum over
that index from 1 to 2. Using this notation, the strain of any fibre is assumed to be given by the macroscopic
strains of the sheet according to

0c = 58k1nkl’ll, (50)
where n; = cos ¢ and n, = sin ¢, and the macroscopic specific stresses are given by
. 1 n/2
56ij = 56f(§0)”injd¢7 (51)
Pr —n/2

where pyis the fibre density and f{ @) is the frequency function of the fibre distribution, which must fulfill the
condition

n/2

i /Zf(w) do =1. (52)
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Eq. (51) can alternatively be expressed in terms of the operator /;; according to

1 /2
Ly(x) = — 1 (@)nin;do, (53)
Pt —n/2
where y is any function of ¢, so that Eq. (51) can be written
Applying the operator /; on de according to Eq. (50) results in
12 1
1;;(0¢) = — / oerf (@)mnmn; de = — Cijrden, (55)
Pt J—x/)2 Pr
where
n/2
Ciju = f(@)nnngn; de. (56)
—n/2

Egs. (54) and (55) can be written in vector form

06" =1(00), (57)

I(0¢) = lCés, (58)
Pr

where

oo\ oY

sa" = | soy, | = | o0 |, (59)
Sa, o,
ey o0&,

de=| den | = | O, |, (60)
20e1, 5ny
Cin Cun Cun

C=|Cunu Cuyn Cunpl. (61)

Cion Cim Chn

The operator I;; can as well be applied to Eqgs. (19)+21), (38)—-(40) and (29)~31), resulting in the corre-
sponding equations

Sep = (ZL: + 05, (62)
e = %f + 085, (63)
Sec = ‘ZL; + 06, (64)
585, — % (65)
S8 = M, (66)

Mg
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50'C — EZC(SEE

0 = —————, 67

c e (67)

58]3 = 5ﬁc, (68)

06p + dac = d6A = 6", (69)
1

p—Cés =1(A0ea) + I((1 — 2)dep). (70)
i

Eq. (70) contains the unevaluated expressions I(Zdes) and I((1 — 2)d¢g). If 1 is a constant these will be
reduced to Adea and (1 — A)dsp, but A is in general a function of ¢. It is however possible to evaluate
the expressions if it is assumed that des and deg can be written as

OeA = qar MM, (71)
583 = NN, (72)
so that
1
dea = —C, (73)
Pr
1
dey = — Cq. (74)
Pr

In this case Eq. (70) can be written as

pic(sg = LC '0ex + (C — L)C ' dgy, (75)
;
where

Ly Lun Lo

L= |Loy Ly»n Lno|, (76)

L Lin L

n/2
L= [ 7(@emnmndo. (77)
—n/2
The authors were not able to prove that Eq. (75) is a valid expression in general, but numerical simulations
suggest that Egs. (71) and (72) and (75) are true.
If the frequency function f'is given by Eq. (12) and the length ratio 4 is given by Eq. (13), then the the
matrices C and L will be

3+ 2a 1 0

C:% I 3-24 0 (78)
0 0 1
and
204152 4+ 0 C[44o 44— 0
ng—z 44a 4—a 0 +% 4-oq 20-152 0 |. (79)

0 0 4+o 0 0 4 -«
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Egs. (62)+(69) and (75) constitute a linear system of differential equations. Most of the variables, 0,
Ogp, 0&c, 085, Ogy, Os., 0op and dac, can be regarded as internal variables that can be eliminated, leaving
only the applied macroscopic stresses 06" and the resulting macroscopic strains de. The total strains are
obtained by adding d¢ to the strains from the moisture problem, Eqgs. (16)—(18).

3. Results

In the results presented here, Eqs. (12) and (13) with A, and 4, according to Eqs. (14) and (15) have been
used to describe the fibre and bond distributions. The creep of the fibres are assumed to be described by
Eqgs. (41)~(43). The pure moisture problem, Egs. (1)—(8), and the mechanical problem, Egs. (62)—(69)
and (75), were solved in MATLAB (2001), using standard routines for solving the differential equations.

The fibre properties depend on the moisture content. This is reflected by letting the compliances 1/Ej,
1/Eg, 1/Ec, aa, ap, ac, 1/ES, 1/E and 1/E{ increase linearly with moisture m, e.g.,

aa(my) — ax(m) (m — my), (80)

ax = ap(m) +
ny — m

where m; and m;, are used as reference points. They were here chosen to be 0.075 and 0.15, respectively. In
the simulations, moisture content was initially 0.10, then decreased to 0.05, increased back to 0.10 etcetera.
The parameters used in the simulations are shown in Table 1. The time is normalized by the cycle period 7,
which should be around 5 h for the parameters to be reasonable. Unless stated otherwise the fibre distri-
bution is uniform, i.e., « =0 in Eq. (12).

Fig. 3 shows the total strains for different uniaxial loads, ranging from 3.3 to 13.3 kN m/kg. The agree-
ment between the linearized model and the non-linear network model from Alfthan (2003) is excellent for
small loads. For higher loads the agreement gets worse, as the applied load is no longer small compared to
the stress state resulting from the pure moisture problem, Fig. 4.

If Egs. (19)—(31) are interpreted as the linear rheological model in Fig. 2, the accelerated creep seen in
Fig. 3 can be interpreted as a result of transient decreases in effective viscosities every time the moisture
content changes. Fig. 5 shows that the inverse viscosities 1/#g and 1/5c have transient peaks whenever
the moisture changes.

Table 1
Parameters used in the simulations

Moisture content

m=0.075 m=0.15
Exn=Ep [GPa] 32.0 21.3

Ec [GPa] 6.40 427

Tas = Tag 5.00x107¢ 7.50 x 107°
Tac 25.0%107° 37.5%107°
ba = by [Pa~'] 1.00x 1077

be [Pa~!] 1.00 x 1077

ES = ES [GPa] 4.00 2.67

ES [GPa] 0.800 0.533
Ba=Pr 0.030

Bc 0.60

p 0.50

pr [kg/m*] 1500

Two values are given for moisture dependent parameters. The creep compliances are normalized by the moisture cycle period 7.
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Fig. 3. Comparison between the linearized model and the full non-linear network model for different uniaxial loads. The specific
stresses are 3.3 (bottom), 6.7, 10.0 and 13.3 kN m/kg (top). The agreement is excellent for small loads, but it gets worse for higher loads

as the assumption behind the linearization is no longer valid.

80

60

40

20

olp, [kNm/kg]
o

[

Fig. 4. The inner stresses produced by the pure moisture problem. The stresses are divided by fibre density p¢ so it is possible to
comparable them to the applied loads. The two curves show the stresses in the two different fibres at the bonds.

Figs. 6 and 7 show creep curves for different anisotropy, demonstrating the validity of Eq. (75). Fig. 6
shows uniaxial load and Fig. 7 shows a combination of uniaxial and biaxial load.

4. Conclusions and discussion

From the results it can be concluded that the agreement between the linearized model and the non-linear
network model is very good for small mechanical loads, as expected from the assumptions made in the lin-
earization. This corresponds to the linear mechano-sorptive creep behaviour often found in experiments,
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Fig. 5. The inverse viscosities 1/ng and 1/5¢ as functions of time. The effective viscosities at the bonds, 5 and ¢, are reduced every
time the moisture changes resulting in the peaks shown in the plot. Due to the anisotropy of the fibres, #c is always lower than 5y and
the highest peaks corresponds to 1/5c.

10 T T T T

-2

— linearized model

- -~ non linear model
4 ; ; : :
0 1 2 3 4 5
vT

Fig. 6. Comparison between the linearized model and the full non-linear network model for different anisotropy. The load is uniaxial.
The constant « in Eq. (12) is equal to —0.5 (top), 0, and +0.5 (bottom), and the specific stress is 6.7 kN m/kg.

see for example Panek et al. (2004). The linearized model is typically valid when the mechanical load is one
order of magnitude smaller than the stresses produced by the moisture changes alone (Fig. 4). For higher
loads the linearized model deviates more and more from the non-linear network model.

The major improvement achieved by the linearization and development of a continuum model is the
speed of calculations. In the non-linear network model (Alfthan, 2003) a non-linear system of differential
equations was solved for three variables in each fibre direction used in the discretization of the fibre distri-
bution. The linearization reduces the model to a small non-linear pure moisture problem of only two
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— linearized model
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T

Fig. 7. Comparison between the linearized model and the full non-linear network model for different anisotropy. The load is initially
uniaxial, but changes to a biaxial load at time #/T = 2.25. The constant « in Eq. (12) is equal to —0.5 (top), 0, and +0.5 (bottom), and
the specific stresses are 6.7 kN m/kg.

variables and a linear mechanical problem. In the continuum formulation, the number of variables of the
mechanical problem are reduced, so that only nine linear differential equations remain. In total, eleven dif-
ferential equations must be solved, and of these only two are non-linear. No discretization of the fibre dis-
tribution is necessary. In comparison, 54 non-linear differential equations were solved for each result from
the network model shown in Figs. 3, 6, and 7. The new model is suitable for implementation as a material
model in a finite element code used for solving structural problems, like corrugated board panels or con-
tainers subjected to varying humidity and mechanical loads. In Appendix A, an implementation of the
model as a user subroutine in ABAQUS (2002) is presented. The finite element formulation has been ver-
ified by comparison to MATLAB-calculations described above.

The largest problem with the model is to determine how to describe the creep, as the creep of paper and
fibres is not a well-known phenomenon. Here the creep laws are assumed to have the form Eqgs. (41)-(43),
and parameters were chosen to get results from the simulations that resemble the creep seen in experiments.
In practice it is hard to determine the parameters in these creep laws, and it is likely that other creep laws
must be adopted to get an accurate description of the creep.
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Appendix A. Formulation for finite element analysis

In this appendix equations for finite element analysis are formulated. These equations are suitable for
two dimensional solid elements or structural elements, like shells. In the following, g, will denote a variable
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g at time ¢, and Ag will be the change of that variable over a time increment Az. The increment will begin at
time ¢ and end at time 7 + Az. A stable time integration scheme will be obtained if central difference oper-
ators are adopted, i.e.,

: Ag

Sl = A’ (81)
1

8riae = & + EAg (82)

In the commercial finite element program ABAQUS (2002) it is possible for users to define their own
constitutive material models in the subroutine UMAT. In the subroutine the material Jacobian
matrix, 0Ae/dAe, must be provided for the constitutive model, and stresses and inner state variables must
be updated. The equations needed for the implementation of the model will be given below.

A.1. The pure moisture problem

In the pure moisture problem, there are two inner state variables that must be updated, ¢, and &¢.. These
are given by the creep laws Egs. (7) and (8), in discrete form

AASEB = oot ) (83)

icc = fe (G tn): (84)
where

TBeriar = % <SEI+%At — e+ (Be = ﬁB)mH»%At)» (85)

Ocrin = % (‘gézgm - ngz%m + (Bs — ﬁC)mH%At)v (86)

with all material parameters evaluated for moisture content i, e
These non-linear equations for Asj and AeZ. can be solved using the Newton-Raphson method. The sys-
tem of equations are rewritten as

Ags .
(A‘C;Ba AEC) AtB SB (UBH%A[’ 8Bt+%At) =0, (87)
C C ASC C
Fc (A8B7 AEC) = Al‘c - fC (O-CH»%AN 8Ct+%At) =0, (88)

and the solution is obtained by iterations using the formulas

OFc _ OFg
Aet At BoAg — oAt C A Agt 29
eyl — Bép, — aFB @Fc 9Fg oFc ( ) SCn)’ ( )

aFB _ oFc
AeS AeS 0Aey ¢ B 0Aey AeS . AgS 9
écnt1 = Bégy — OFp OFC O0Fp OFC ( EBns 8’Cn)? ( 0)

OAey GASE aAecc 0As}

where

oFg 1 EgEc  Ofs 10fs
O0Aey At 2(Ep +Ec) dop 2 e’
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OFy  EpEc  Ofy (92)
GAs‘é o Z(EB +Ec) aGB ’
OFc _  EpEc  dfc 93)
GAS(]; 2(EB + Ec) 60C ’
OFc _ 1, Esbc Ofc 193/c (94)

A.2. The mechanical problem

From the solution to the pure moisture problem, the effective creep properties 4, s, e, E4, Eg and E2C
can be calculated according to Eqgs. (32)—(37).

The inner variables d&5, g, and deZ. and the stress d6" must be updated. In finite element calculations it
is preferred to use regular stresses de instead of specific stresses 06", so the following equations will be given
for regular stresses, and the inner variables will change dimensions as appropriate. The relation between the
different stresses is given by

o6 = ppoa”. (95)

The inner stresses 06 4, d6 and da¢c are eliminated from Eqgs. (62)—(69) and (75), and the remaining equa-
tions are rewritten as

A
kaAGE, = 66T + % (96)
ki ASES, — 50_;{{ n quéa N kBC(A58c2* Adss,) n AkBC(ésgz — 0s5,) ’ (97)
A ASES, — ASES A ¢ — Ogs
kCAéscé _ 562‘:‘ + qczéa + kBC( 58]32 58C) + kBC(éagt 58(:[) , (98)
Ade = JAde — K Adg), — qK,Ad8y — qc Ko Adel. — Ksda,, (99)
where

_ Ei Na

ka = 5 + AL (100)
E123 )

kg = 5 + A (101)
EZC Nc

_Lc  Hc 102

kc 3 + AL (102)
EgEc

kpc = —, 103

B¢ T Ep + Ec (103)

Ey
qs = EB +EC’ (104)
Ec

_ 7 105

Ic = gy ¥ Ec (105)

06! = Sap, — EX 085, (106)

50‘?{5 = o, — Eéésﬁt, (107)

o6 = S6c, — ELOEL,, (108)
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rose(E Sl e (109
K, C<E£A+E§+;C>ILCI, (110)
Kz_C<E£A+E§+II;C>I(C—L)C1, (111)
K; _C<E£A+%>IA(ELA+%)CI. (112)

It is assumed that the elastic moduli Eg and Ec have similar dependencies on moisture content, so that
¢p and ¢gc do not depend on moisture content. All other parameters must be evaluated at moisture content
m,,1,- If the moisture content changes during the increment, there will be a contribution to the equations
from the changing material parameters. These contributions are found in Egs. (97), (98) and (112), where A
before an expression denote an incremental change of that expression.

J in Eq. (109) is the material Jacobian that must be provided by the material subroutine in ABAQUS
(2002), i.e.,

OASe L C-L\'
—J= gy = . 113
ohos 0 pC(EA+EB+EC> ¢ (113)

Eqgs. (96)—(99) constitute a system of linear equations, that can easily be solved. The stress increment Ade
is given by

-1 e e
A50' _ < K] (2q]23kc + 2q%k3 —+ ch)K2> (JA58 _ K150'Af£ (2quC —+ kBC)KZ(SO'Bftf

[+ + -
2kA 2(2kBkC + (kB + kc)kgc) kA 2kBkC + (kB + kC)kBC

_ (2quB + kl3C)I(250.eCftf _ (quC - quB)AkBCKZ(éscCt — 580Bt) —K 50_ ) (114)
2kpkc + (kg + kc)knc 2kgkc + (kg + kc)knc )

The increments of the inner variables are

eff
Aasgzéz:f+%, (115)
(2kc + kpc)dasl + kpcdall + kcAkpe (e, — 0&s,)
2kpkc + (kg + kc)ksc
(2ggkc + kpc)Ado
2(2kgkc + (kg + kc)ksc)’
| kpc0olT + (2kp + kpc) 00 + ki Akpe (585, — 0S,)
- 2kgkc + (kg + kc)kse
(2qcks + kpc)Ado

2(2kgkc + (kg + kc)kse)
with Ade according to Eq. (114).

Adey, =

(116)

ASE.

(117)
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