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Abstract

The creep of paper is accelerated by moisture cycling. This effect is known as mechano-sorptive creep. It is assumed
that this is an effect of transient stresses produced during moisture content changes in combination with non-linear
creep behaviour of the fibres. The stresses produced by the moisture content changes are often much larger than the
applied mechanical loads. If this is the case, the mechanical loads are only a perturbation to the internal stress state,
and it will appear as if the mechano-sorptive creep is linear in stress. It is possible to take advantage of this feature.
In the present report the pure moisture problem is first solved. The mechanical load is then treated as a perturbation
of the solution to the moisture problem. Using this strategy, it is possible to linearize a non-linear network model for
mechano-sorptive creep and to formulate a continuum model. As a result, the number of variables in the model is
reduced. This is a significant improvement as it will be possible to use the linearized model to describe the material
in a finite element program and solve problems with complicated geometries.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Paper and board packages are often loaded for times long enough for creep to be important, and this
must be considered in design. Paper is sensitive to moisture and the creep compliance increases with mois-
ture content. High humidity climate is however not the worst possible environment as creep is also accel-
erated by varying humidity (Byrd, 1972a,b). The accelerated creep is known as mechano-sorptive creep, and
is also found in wood (Armstrong and Kingston, 1960; Armstrong and Christensen, 1961), concrete
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(Pickett, 1942) and some synthetic fibres (Wang et al., 1990, 1991, 1992, 1993; Habeger and Coffin, 2000;
Habeger et al., 2001).

There is still no generally accepted explanation for mechano-sorptive creep, but there are several hypoth-
eses and models. One possible explanation is that large local stresses are produced when the moisture con-
tent changes due to inhomogeneous hygroexpansion, which in turn will accelerate the creep if the creep rate
depends non-linearly on stresses. Models have demonstrated that this mechanism will produce accelerated
creep resembling the creep behaviour found in experiments (Pickett, 1942; Habeger and Coffin, 2000;
Alfthan et al., 2002; Alfthan, 2003). The advantage over several other models is that no special mechanism
is introduced to explain mechano-sorptive creep—it is known that the creep of fibres and paper is non-linear
and inhomogeneous hygroexpansion can be the result of material inhomogeneities, moisture gradients or
both. However, the non-linearity necessary for the mechanism makes the models complicated, and numer-
ical methods are necessary even for simple problems. The network models (Alfthan et al., 2002; Alfthan,
2003) include many variables and equations to solve, and numerical simulations are therefore very slow.

In Alfthan (2003) it was found that the network model, albeit based on a non-linear mechanism, exhib-
ited an almost linear behaviour between stresses and strains for mechanical loads that are encountered in
applications. In the present paper, this feature is exploited to linearize the model, and a continuum model
for mechano-sorptive creep of paper with a reduced number of variables is obtained. This linearized model
can for example be implemented as a material model in a finite element program and it can be used to solve
problems with more complicated geometries, for example a corrugated board container.
2. Linearization of the network model

It is assumed that the internal stresses produced by inhomogeneous hygroexpansion are much larger
than the stresses produced by externally applied mechanical loads, and that the latter can be treated as a
small perturbation of the former stress state. An approximate solution to a problem with moisture varia-
tions and external loads is then obtained by first solving a non-linear problem with moisture variations but
no external loads, and then solve a linearized problem to get the perturbation caused by the external loads.
A related analysis of moisture induced transients in DMA response of a simple one dimensional model is
found in Coffin and Habeger (2001).

Fig. 1 shows the geometry of a fibre. In the following, index A is used for variables and constants for the
free segments, index B is used for the bonded segments and index C is used for the bonded crossing fibres.
Properties with index A or B reflect the longitudinal behaviour of fibres, while properties with index C
reflect the transverse behaviour.

2.1. Analysis of the pure moisture problem

First the pure moisture problem is considered. It is assumed that the moisture content m is known as a
function of time t, m = m(t). It is also assumed that the free segments of the fibres can expand freely so that
no stresses are created, i.e.,
eA ¼ bAm; ð1Þ
rA ¼ 0. ð2Þ
For the bonded segments, see Fig. 1, strains and stresses are related by
eB ¼ eC; ð3Þ
rB þ rC ¼ 0. ð4Þ
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Fig. 1. Geometry of the fibre segments. The ratio k is defined as the length of the free segments, Lfree, divided by the total length, Ltotal,
and the direction of the fibre is defined by the angle u measured from the x-axis of the coordinate system.
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where it has been assumed that fibres cross at right angles. The stresses rB and rC relax as the material
creeps and will eventually vanish. The constitutive laws for the bonded fibre segments read
eB ¼ rB

EB

þ ecB þ bBm; ð5Þ

eC ¼ rC

EC

þ ecC þ bCm; ð6Þ
where the creep strains ecB and ecC are given by the creep laws
_ecB ¼ fBðrB; e
c
BÞ; ð7Þ

_ecC ¼ fCðrC; e
c
CÞ. ð8Þ
For a given moisture content history, Eqs. (1)–(8) constitute a non-linear system of equations for the stres-
ses and strains of the pure moisture problem.

The average strain of a fibre will be
e ¼ keA þ ð1� kÞeB; ð9Þ

where k is the ratio between free fibre length and total fibre length, see Fig. 1. For an anisotropic fibre ori-
entation, the ratio k generally vary with orientation.

The average strain is also related to the macroscopic strains of the sheet. In accordance with Alfthan
(2003), it is assumed that the strain of a fibre is equal to the macroscopic strain in the fibre direction, i.e.,
e ¼ excos
2uþ eysin

2uþ cxy sinu cosu; ð10Þ
where u is the angle of the fibre measured from the x-axis.
If the fibre distribution is given, it is possible to calculate the number of fibre crossings (Komori and

Makishima, 1977), and from that the ratio k can be calculated. For a plane fibre network, with rectangular
cross sections of the fibres, the ratio k is given by
k ¼ 1� 2q
Z p=2

�p=2
f ðwÞj sinðu� wÞjdw; ð11Þ



6264 J. Alfthan, P. Gudmundson / International Journal of Solids and Structures 42 (2005) 6261–6276
where f is the frequency function of the fibre distribution. If the frequency function is
f ¼ 1

p
ð1þ a cos 2uÞ; ð12Þ
then k will be given by
k ¼ kxcos
2uþ kysin

2u; ð13Þ

with
kx ¼ 1� 4q
p

þ 4qa
3p

; ð14Þ

ky ¼ 1� 4q
p

� 4qa
3p

; ð15Þ
where q is the volume fraction of fibres in the network.
In this case the initial assumptions Eqs. (1) and (2) will be fulfilled, and Eqs. (9) and (10) will be reduced

to
ex ¼ kxeA þ ð1� kxÞeB; ð16Þ
ey ¼ kyeA þ ð1� kyÞeB; ð17Þ
cxy ¼ 0. ð18Þ
For general fibre distributions, Eqs. (1) and (2) will not be exactly satisfied, but the error is quite small.

2.2. Linearized analysis of the mechanical problem

In the following analysis, it is assumed that the mechanical load can be treated as a small perturbation to
the moisture problem. The perturbation strains deA, deB and deC in a fibre are then given by
deA ¼ drA

EA

þ decA; ð19Þ

deB ¼ drB

EB

þ decB; ð20Þ

deC ¼ drC

EC

þ decC; ð21Þ
where drA, drB and drC are the perturbations in stress and decA, de
c
B and decC are the creep strains caused by

the perturbation.
The creep strains will be given by Eqs. (7) and (8) and the corresponding creep law for the free segments
_ecA ¼ fAðrA; e
c
AÞ. ð22Þ
The functions fA and fB are equal as both are used to describe the longitudinal behaviour of the fibres.
The mechanical stresses are only a perturbation to the stress state of the pure moisture problem, so it is

viable to approximate the creep laws by Taylor expansions
_ecA � fAð0; 0Þ þ
ofA
orA

ð0; 0ÞdrA þ ofA
oecA

ð0; 0ÞdecA; ð23Þ

_ecB � fBðr0
B; e

c0
B Þ þ

ofB
orB

ðr0
B; e

c0
B ÞdrB þ ofB

oecB
ðr0

B; e
c0
B ÞdecB; ð24Þ

_ecC � fCðr0
C; e

c0
C Þ þ

ofC
orC

ðr0
C; e

c0
C ÞdrC þ ofC

oecC
ðr0

C; e
c0
C ÞdecC; ð25Þ
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where r0
B, e

c0
B , r

0
C and ec0C are the time dependent stresses and strains that result from the pure moisture prob-

lem. Identification of the perturbations to the creep strain rates, d_ecA, d_e
c
B and d_ecC, leads to the linearized

creep laws
Fig
d_ecA ¼ ofA
orA

ð0; 0ÞdrA þ ofA
oecA

ð0; 0ÞdecA; ð26Þ

d_ecB ¼ ofB
orB

ðr0
B; e

c0
B ÞdrB þ

ofB
oecB

ðr0
B; e

c0
B ÞdecB; ð27Þ

d_ecC ¼ ofC
orC

ðr0
C; e

c0
C ÞdrC þ ofC

oecC
ðr0

C; e
c0
C ÞdecC. ð28Þ
The perturbation strains and stresses in the fibre are related by
deB ¼ deC; ð29Þ
drB þ drC ¼ drA ¼ dr; ð30Þ
de ¼ kdeA þ ð1� kÞdeB; ð31Þ
where dr has been introduced as a shorthand for the stress in the free segments.
Eqs. (19)–(31) can be interpreted as a linear rheological model, see Fig. 2. The parameters of the rheo-

logical model are identified from Eqs. (26)–(28)
1

gA
¼ ofA

orA

ð0; 0Þ; ð32Þ

1

E2
A

¼ �ofA
orA

ð0; 0Þ
�

ofA
oecA

ð0; 0Þ; ð33Þ

1

gB
¼ ofB

orB

ðr0
B; e

c0
B Þ; ð34Þ

1

E2
B

¼ �ofB
orB

ðr0
B; e

c0
B Þ

�
ofB
oecB

ðr0
B; e

c0
B Þ; ð35Þ

1

gC
¼ ofC

orC

ðr0
C; e

c0
C Þ; ð36Þ
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. 2. A rheological model representing Eqs. (19)–(28). The parameters of the rheological model are given by Eqs. (32)–(37).
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1

E2
C

¼ �ofC
orC

ðr0
C; e

c0
C Þ

�
ofC
oecC

ðr0
C; e

c0
C Þ. ð37Þ
The parameters depend on the solution from the pure moisture problem, hence they will be time depen-
dent. Using the parameters of the rheological model, Eqs. (26)–(28) can be rewritten as
d_ecA ¼ drA � E2
Ade

c
A

gA
; ð38Þ

d_ecB ¼ drB � E2
Bde

c
B

gB
; ð39Þ

d_ecC ¼ drC � E2
Cde

c
C

gC
. ð40Þ
If it is assumed that the creep can be described by the non-linear creep laws
fA ¼ aA sinhðbAðrA � Ec
Ae

c
AÞÞ; ð41Þ

fB ¼ aB sinhðbBðrB � Ec
Be

c
BÞÞ; ð42Þ

fC ¼ aC sinhðbCðrC � Ec
Ce

c
CÞÞ; ð43Þ
then
1

gA
¼ aAbA; ð44Þ

E2
A ¼ Ec

A; ð45Þ
1

gB
¼ aBbB coshðbBðr0

B � Ec
Be

c0
B ÞÞ; ð46Þ

E2
B ¼ Ec

B; ð47Þ
1

gC
¼ aCbC coshðbCðr0

C � Ec
Ce

c0
C ÞÞ; ð48Þ

E2
C ¼ Ec

C; ð49Þ
where it has been utilized that stresses in the free segments vanish for the moisture problem.

2.3. Continuum model

In this subsection indices i, j, k and l denoted coordinate directions, and they take values 1 and 2 cor-
responding to x and y respectively, see Fig. 1. A repeated index letter in an expression indicates a sum over
that index from 1 to 2. Using this notation, the strain of any fibre is assumed to be given by the macroscopic
strains of the sheet according to
de ¼ deklnknl; ð50Þ

where n1 ¼ cosu and n2 ¼ sinu, and the macroscopic specific stresses are given by
drw
ij ¼

1

qf

Z p=2

�p=2
drf ðuÞninj du; ð51Þ
where qf is the fibre density and f(u) is the frequency function of the fibre distribution, which must fulfill the
condition
Z p=2

�p=2
f ðuÞdu ¼ 1. ð52Þ



J. Alfthan, P. Gudmundson / International Journal of Solids and Structures 42 (2005) 6261–6276 6267
Eq. (51) can alternatively be expressed in terms of the operator Iij according to
I ijðvÞ ¼
1

qf

Z p=2

�p=2
vf ðuÞninj du; ð53Þ
where v is any function of u, so that Eq. (51) can be written
drw
ij ¼ I ijðdrÞ. ð54Þ
Applying the operator Iij on de according to Eq. (50) results in
I ijðd�Þ ¼
1

qf

Z p=2

�p=2
deklf ðuÞninjnknl du ¼ 1

qf

Cijkldekl; ð55Þ
where
Cijkl ¼
Z p=2

�p=2
f ðuÞninjnknl du. ð56Þ
Eqs. (54) and (55) can be written in vector form
drw ¼ IðdrÞ; ð57Þ

IðdeÞ ¼ 1

qf

Cde; ð58Þ
where
drw ¼
drw

11

drw
22

drw
12

2
64

3
75 ¼

drw
x

drw
y

dswxy

2
64

3
75; ð59Þ

de ¼
de11
de22
2de12

2
64

3
75 ¼

dex
dey
dcxy

2
64

3
75; ð60Þ

C ¼
C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

2
64

3
75. ð61Þ
The operator Iij can as well be applied to Eqs. (19)–(21), (38)–(40) and (29)–(31), resulting in the corre-
sponding equations
deA ¼ drA

EA

þ decA; ð62Þ

deB ¼ drB

EB

þ decB; ð63Þ

deC ¼ drC

EC

þ decC; ð64Þ

d_ecA ¼ drA � E2
Ade

c
A

gA
; ð65Þ

d_ecB ¼ drB � E2
Bde

c
B

gB
; ð66Þ
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d_ecC ¼ drC � E2
Cde

c
C

gC
; ð67Þ

deB ¼ deC; ð68Þ
drB þ drC ¼ drA ¼ drw; ð69Þ
1

qf

Cde ¼ IðkdeAÞ þ Iðð1� kÞdeBÞ. ð70Þ
Eq. (70) contains the unevaluated expressions I(kdeA) and I((1 � k)deB). If k is a constant these will be
reduced to kdeA and (1 � k)deB, but k is in general a function of u. It is however possible to evaluate
the expressions if it is assumed that deA and deB can be written as
deA ¼ qAklnknl; ð71Þ
deB ¼ qBklnknl; ð72Þ
so that
deA ¼ 1

qf

CqA; ð73Þ

deB ¼ 1

qf

CqB. ð74Þ
In this case Eq. (70) can be written as
1

qf

Cde ¼ LC�1deA þ ðC� LÞC�1deB; ð75Þ
where
L ¼
L1111 L1122 L1112

L2211 L2222 L2212

L1211 L1222 L1212

2
64

3
75; ð76Þ

Lijkl ¼
Z p=2

�p=2
f ðuÞkðuÞninjnknl du. ð77Þ
The authors were not able to prove that Eq. (75) is a valid expression in general, but numerical simulations
suggest that Eqs. (71) and (72) and (75) are true.

If the frequency function f is given by Eq. (12) and the length ratio k is given by Eq. (13), then the the
matrices C and L will be
C ¼ 1

8

3þ 2a 1 0

1 3� 2a 0

0 0 1

2
64

3
75 ð78Þ
and
L ¼ kx
64

20þ 15a 4þ a 0

4þ a 4� a 0

0 0 4þ a

2
64

3
75þ ky

64

4þ a 4� a 0

4� a 20� 15a 0

0 0 4� a

2
64

3
75. ð79Þ
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Eqs. (62)–(69) and (75) constitute a linear system of differential equations. Most of the variables, deA,
deB, deC, decA, de

c
B, de

c
C, drB and drC, can be regarded as internal variables that can be eliminated, leaving

only the applied macroscopic stresses drw and the resulting macroscopic strains de. The total strains are
obtained by adding de to the strains from the moisture problem, Eqs. (16)–(18).
3. Results

In the results presented here, Eqs. (12) and (13) with kx and ky according to Eqs. (14) and (15) have been
used to describe the fibre and bond distributions. The creep of the fibres are assumed to be described by
Eqs. (41)–(43). The pure moisture problem, Eqs. (1)–(8), and the mechanical problem, Eqs. (62)–(69)
and (75), were solved in MATLAB (2001), using standard routines for solving the differential equations.

The fibre properties depend on the moisture content. This is reflected by letting the compliances 1/EA,
1/EB, 1/EC, aA, aB, aC, 1=E

c
A, 1=E

c
B and 1=Ec

C increase linearly with moisture m, e.g.,
Table
Param

EA = E

EC

TaA =
TaC
bA = b

bC
Ec
A ¼ E

Ec
C

bA = b
bC
q
qf

Two v
aA ¼ aAðm1Þ þ
aAðm2Þ � aAðm1Þ

m2 � m1

ðm� m1Þ; ð80Þ
where m1 and m2 are used as reference points. They were here chosen to be 0.075 and 0.15, respectively. In
the simulations, moisture content was initially 0.10, then decreased to 0.05, increased back to 0.10 etcetera.
The parameters used in the simulations are shown in Table 1. The time is normalized by the cycle period T,
which should be around 5 h for the parameters to be reasonable. Unless stated otherwise the fibre distri-
bution is uniform, i.e., a = 0 in Eq. (12).

Fig. 3 shows the total strains for different uniaxial loads, ranging from 3.3 to 13.3 kN m/kg. The agree-
ment between the linearized model and the non-linear network model from Alfthan (2003) is excellent for
small loads. For higher loads the agreement gets worse, as the applied load is no longer small compared to
the stress state resulting from the pure moisture problem, Fig. 4.

If Eqs. (19)–(31) are interpreted as the linear rheological model in Fig. 2, the accelerated creep seen in
Fig. 3 can be interpreted as a result of transient decreases in effective viscosities every time the moisture
content changes. Fig. 5 shows that the inverse viscosities 1/gB and 1/gC have transient peaks whenever
the moisture changes.
1
eters used in the simulations

Moisture content

m = 0.075 m = 0.15

B [GPa] 32.0 21.3
[GPa] 6.40 4.27

TaB 5.00 · 10�6 7.50 · 10�6

25.0 · 10�6 37.5 · 10�6

B [Pa�1] 1.00 · 10�7

[Pa�1] 1.00 · 10�7

c
B [GPa] 4.00 2.67

[GPa] 0.800 0.533

B 0.030
0.60
0.50

[kg/m3] 1500

alues are given for moisture dependent parameters. The creep compliances are normalized by the moisture cycle period T.
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Figs. 6 and 7 show creep curves for different anisotropy, demonstrating the validity of Eq. (75). Fig. 6
shows uniaxial load and Fig. 7 shows a combination of uniaxial and biaxial load.
4. Conclusions and discussion

From the results it can be concluded that the agreement between the linearized model and the non-linear
network model is very good for small mechanical loads, as expected from the assumptions made in the lin-
earization. This corresponds to the linear mechano-sorptive creep behaviour often found in experiments,
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see for example Panek et al. (2004). The linearized model is typically valid when the mechanical load is one
order of magnitude smaller than the stresses produced by the moisture changes alone (Fig. 4). For higher
loads the linearized model deviates more and more from the non-linear network model.

The major improvement achieved by the linearization and development of a continuum model is the
speed of calculations. In the non-linear network model (Alfthan, 2003) a non-linear system of differential
equations was solved for three variables in each fibre direction used in the discretization of the fibre distri-
bution. The linearization reduces the model to a small non-linear pure moisture problem of only two
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variables and a linear mechanical problem. In the continuum formulation, the number of variables of the
mechanical problem are reduced, so that only nine linear differential equations remain. In total, eleven dif-
ferential equations must be solved, and of these only two are non-linear. No discretization of the fibre dis-
tribution is necessary. In comparison, 54 non-linear differential equations were solved for each result from
the network model shown in Figs. 3, 6, and 7. The new model is suitable for implementation as a material
model in a finite element code used for solving structural problems, like corrugated board panels or con-
tainers subjected to varying humidity and mechanical loads. In Appendix A, an implementation of the
model as a user subroutine in ABAQUS (2002) is presented. The finite element formulation has been ver-
ified by comparison to MATLAB-calculations described above.

The largest problem with the model is to determine how to describe the creep, as the creep of paper and
fibres is not a well-known phenomenon. Here the creep laws are assumed to have the form Eqs. (41)–(43),
and parameters were chosen to get results from the simulations that resemble the creep seen in experiments.
In practice it is hard to determine the parameters in these creep laws, and it is likely that other creep laws
must be adopted to get an accurate description of the creep.
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Appendix A. Formulation for finite element analysis

In this appendix equations for finite element analysis are formulated. These equations are suitable for
two dimensional solid elements or structural elements, like shells. In the following, gt will denote a variable



J. Alfthan, P. Gudmundson / International Journal of Solids and Structures 42 (2005) 6261–6276 6273
g at time t, and Dg will be the change of that variable over a time increment Dt. The increment will begin at
time t and end at time t + Dt. A stable time integration scheme will be obtained if central difference oper-
ators are adopted, i.e.,
_gtþ1
2Dt

¼ Dg
Dt

; ð81Þ

gtþ1
2Dt

¼ gt þ
1

2
Dg. ð82Þ
In the commercial finite element program ABAQUS (2002) it is possible for users to define their own
constitutive material models in the subroutine UMAT. In the subroutine the material Jacobian
matrix, oDr/oDe, must be provided for the constitutive model, and stresses and inner state variables must
be updated. The equations needed for the implementation of the model will be given below.

A.1. The pure moisture problem

In the pure moisture problem, there are two inner state variables that must be updated, ecB and ecC. These
are given by the creep laws Eqs. (7) and (8), in discrete form
DecB
Dt

¼ fB rBtþ1
2Dt
; ec

Btþ1
2Dt

� �
; ð83Þ

DecC
Dt

¼ fC rCtþ1
2Dt
; ec

Ctþ1
2Dt

� �
; ð84Þ
where
rBtþ1
2Dt

¼ EBEC

EB þ EC

ec
Ctþ1

2Dt
� ec

Btþ1
2Dt

þ ðbC � bBÞmtþ1
2Dt

� �
; ð85Þ

rCtþ1
2Dt

¼ EBEC

EB þ EC

ec
Btþ1

2Dt
� ec

Ctþ1
2Dt

þ ðbB � bCÞmtþ1
2Dt

� �
; ð86Þ
with all material parameters evaluated for moisture content mtþ1
2Dt
.

These non-linear equations for DecB and DecC can be solved using the Newton–Raphson method. The sys-
tem of equations are rewritten as
F BðDecB;DecCÞ ¼
DecB
Dt

� fB rBtþ1
2Dt
; ec

Btþ1
2Dt

� �
¼ 0; ð87Þ

F CðDecB;DecCÞ ¼
DecC
Dt

� fC rCtþ1
2Dt
; ec

Ctþ1
2Dt

� �
¼ 0; ð88Þ
and the solution is obtained by iterations using the formulas
DecBnþ1 ¼ DecBn �
F B

oFC

oDec
C
� oF B

oDec
C
F C

oF B

oDec
B

oFC

oDec
C
� oF B

oDec
C

oF C

oDec
B

ðDecBn;DecCnÞ; ð89Þ

DecCnþ1 ¼ DecCn �
oF B

oDec
B
F C � F B

oF C

oDec
B

oF B

oDec
B

oFC

oDec
C
� oF B

oDec
C

oF C

oDec
B

ðDecBn;DecCnÞ; ð90Þ
where
oF B

oDecB
¼ 1

Dt
þ EBEC

2ðEB þ ECÞ
ofB
orB

� 1

2

ofB
oecB

; ð91Þ
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oF B

oDecC
¼ � EBEC

2ðEB þ ECÞ
ofB
orB

; ð92Þ

oF C

oDecB
¼ � EBEC

2ðEB þ ECÞ
ofC
orC

; ð93Þ

oF C

oDecC
¼ 1

Dt
þ EBEC

2ðEB þ ECÞ
ofC
orC

� 1

2

ofC
oecC

. ð94Þ
A.2. The mechanical problem

From the solution to the pure moisture problem, the effective creep properties gA, gB, gC, E
2
A, E

2
B and E2

C

can be calculated according to Eqs. (32)–(37).
The inner variables decA, de

c
B and decC and the stress drw must be updated. In finite element calculations it

is preferred to use regular stresses dr instead of specific stresses drw, so the following equations will be given
for regular stresses, and the inner variables will change dimensions as appropriate. The relation between the
different stresses is given by
dr ¼ qqfdr
w. ð95Þ
The inner stresses drA, drB and drC are eliminated from Eqs. (62)–(69) and (75), and the remaining equa-
tions are rewritten as
kADdecA ¼ dreff
At þ

Ddr
2

; ð96Þ

kBDdecB ¼ dreff
Bt þ

qBDdr
2

þ kBCðDdecC � DdecBÞ
2

þ DkBCðdecCt � decBtÞ
2

; ð97Þ

kCDdecC ¼ dreff
Ct þ

qCDdr
2

þ kBCðDdecB � DdecCÞ
2

þ DkBCðdecBt � decCtÞ
2

; ð98Þ

Ddr ¼ JDde� K1Dde
c
A � qBK2Dde

c
B � qCK2Dde

c
C � K3drt; ð99Þ
where
kA ¼ E2
A

2
þ gA

Dt
; ð100Þ

kB ¼ E2
B

2
þ gB

Dt
; ð101Þ

kC ¼ E2
C

2
þ gC

Dt
; ð102Þ

kBC ¼ EBEC

EB þ EC

; ð103Þ

qB ¼ EB

EB þ EC

; ð104Þ

qC ¼ EC

EB þ EC

; ð105Þ

dreff
At ¼ drAt � E2

Ade
c
At; ð106Þ

dreff
Bt ¼ drBt � E2

Bde
c
Bt; ð107Þ

dreff
Ct ¼ drCt � E2

Cde
c
Ct; ð108Þ
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J ¼ qC
L

EA

þ C� L

EB þ EC

� ��1

C; ð109Þ

K1 ¼ C
L

EA

þ C� L

EB þ EC

� ��1

LC�1; ð110Þ

K2 ¼ C
L

EA

þ C� L

EB þ EC

� ��1

ðC� LÞC�1; ð111Þ

K3 ¼ C
L

EA

þ C� L

EB þ EC

� ��1

D
L

EA

þ C� L

EB þ EC

� �
C�1. ð112Þ
It is assumed that the elastic moduli EB and EC have similar dependencies on moisture content, so that
qB and qC do not depend on moisture content. All other parameters must be evaluated at moisture content
mtþ1

2Dt
. If the moisture content changes during the increment, there will be a contribution to the equations

from the changing material parameters. These contributions are found in Eqs. (97), (98) and (112), where D
before an expression denote an incremental change of that expression.

J in Eq. (109) is the material Jacobian that must be provided by the material subroutine in ABAQUS
(2002), i.e.,
oDdr
oDde

¼ J ¼ qC
L

EA

þ C� L

EB þ EC

� ��1

C. ð113Þ
Eqs. (96)–(99) constitute a system of linear equations, that can easily be solved. The stress increment Ddr
is given by
Ddr ¼ Iþ K1

2kA
þ ð2q2BkC þ 2q2CkB þ kBCÞK2

2ð2kBkC þ ðkB þ kCÞkBCÞ

� ��1

JDde� K1dreff
At

kA
� ð2qBkC þ kBCÞK2dreff

Bt

2kBkC þ ðkB þ kCÞkBC

�

� ð2qCkB þ kBCÞK2dreff
Ct

2kBkC þ ðkB þ kCÞkBC
� ðqBkC � qCkBÞDkBCK2ðdecCt � decBtÞ

2kBkC þ ðkB þ kCÞkBC
� K3drt

�
. ð114Þ
The increments of the inner variables are
DdecA ¼ dreff
At

kA
þ Ddr

2kA
; ð115Þ

DdecB ¼ ð2kC þ kBCÞdreff
Bt þ kBCdreff

Ct þ kCDkBCðdecCt � decBtÞ
2kBkC þ ðkB þ kCÞkBC

þ ð2qBkC þ kBCÞDdr
2ð2kBkC þ ðkB þ kCÞkBCÞ

; ð116Þ

DdecC ¼ kBCdreff
Bt þ ð2kB þ kBCÞdreff

Ct þ kBDkBCðdecBt � decCtÞ
2kBkC þ ðkB þ kCÞkBC

þ ð2qCkB þ kBCÞDdr
2ð2kBkC þ ðkB þ kCÞkBCÞ

ð117Þ
with Ddr according to Eq. (114).
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